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Abstract. This paper proposes a control scheme of
back-to-back PWM converters for the permanent mag-
net synchronous generator (PMSG) wind turbine sys-
tem. The DC-link voltage can be controlled at the
machine-side converter (MSC), while the grid-side con-
verter (GSC) controls the grid active power for a maz-
imum power point tracking (MPPT). At the grid fault
condition, the DC-link wvoltage controller is designed
using a feedback linearization (FL) theory. For the
MPPT, a proportional control loop is added to the
torque control to reduce the influence of the inertia mo-
ment in the wind turbines, which can improve its dy-
namic performance. The validity of this control algo-
rithm has been verified by the simulation of the 2-MW
PMSG wind turbine system.

Keywords

DC-link voltage, feedback linearization, MPPT,
PMSG, sag, swell.

1. Introduction

In the recent years, the wind power generation has been
concerned as one of the most rapidly growing energy
sources in the world since the natural resources are
becoming exhausted. In the variable-speed wind tur-
bine (WT) systems, a direct-drive wind energy conver-
sion system based on PMSGs has a lot of advantages

such as no gearbox, high precision, high power density,
and simple control method, except initial installation
costs [1], [2].

As the scale of wind farms becomes larger and larger,
the condition of the grid-connected wind turbines is
more important. Recently, some countries have issued
the dedicated grid codes for connecting the wind tur-
bine system to the grid [3], [4]. Also, the smart-grid
and the micro-grid have been researched for the effi-
ciency of the power management [5], [6]. However, the
grid voltage in these systems is more fluctuated than
that of the conventional grid. Therefore, an advanced
control of the wind power generation system is required
for the grid abnormal conditions.

Several solutions have been proposed for the grid
faults in the variable-speed wind turbine systems. For
the low voltage ride-through (LVRT) purpose, a crow-
bar system consisting an external resistor is connected
in the rotor-side of the doubly-fed induction genera-
tor (DFIG) to absorb the active power during the grid
fault [7], [8]. The wind turbine keeps operating to
produce the active power, whereas the reactive power
or the voltage at the grid connection is controlled by
the GSC. Nevertheless, during a grid fault and in the
case of a weak grid, the GSC cannot provide suffi-
cient reactive power or voltage support due to its small
power capacity and there is a risk of voltage instabil-
ity. Also, to guarantee the uninterrupted operation of a
DFIG wind turbine during the grid faults, a static syn-
chronous compensator (STATCOM) which is installed
at the point of common coupling (PCC) has been used
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to inject the reactive power to the grid [9], [10], [I1].
However, it is not used alone for the DFIG ride-through
capability since it cannot protect the rotor-side con-
verter (RSC) during a grid fault. On the other words,
it should be used in addition to the crowbar circuit
which protects the RSC from the rotor over-current
when the grid fault happens.

For the PMSG wind turbine systems, a brak-
ing chopper (BC) with the low cost advantage
and the simple control has been employed for the
LVRT [12], [13], [14]. However, it is not so easy to
improve the power quality at the output of the wind
turbine systems since the BC can just dissipate the
power with no capability of returning the power to the
system. Moreover, the STATCOM has been applied
to maintain the wind turbine system connected to the
grid during the grid faults [I5]. By using this method,
the regulation of the voltage is considerably improved
in both the transient state and the steady-state. How-
ever, the STATCOM can not be used alone without
the BC. Another different solution which employs the
energy storage system (ESS) can not only offer a ride-
through capability but also suppress the output power
fluctuation of the wind turbine systems [16]. In this
method, in order to reduce the ESS power capacity
that it can absorb the full differential power during the
grid voltage fault, the generator speed can be increased
to store the kinetic energy in the system inertia. How-
ever, the ESS power capacity required for the LVRT is
still higher than the level of output power fluctuation
in the wind turbine systems. So, the designed power
capacity of the ESS will be fully utilized only under
deep voltage sags for a short time, which occur rarely.
Therefore, this ESS system designed for the extreme
case is too expensive.

In the PMSG wind turbine system, the generator is
connected to the grid through the full-scale back-to-
back PWM converters. Normally, DC-link voltage is
controlled to be a constant at the grid-side converter,
while the machine-side converter controls the active
power. For grid voltage faults, the grid-side converter
(GSC) in the conventional control method may be out
of control. When the grid fault happens, the DC-link
voltage is excessively increased due to the continuous
operation of WT and generator. However, the overall
generated power cannot deliver to the grid fully.

A few researches have been presented that the DC-
link voltage control schemes are employed at the
machine-side converter instead of the grid-side con-
verter [I7], [I8]. By increasing the generator speed
during the grid voltage sag, the DC-link voltage can
be controlled to be constant. However, the response
of the DC-link voltage is still not good although a hy-
brid adaptive PI controller is applied, depending on
the relationship between the power and energy [17]. In
the proposed method, the MSC controls the DC-link

voltage, and the GSC controls the active power for the
MPPT.

In some cases, the DC-link voltage control is not
regarded as the nonlinear characteristics of the wind
power system. By using feedback linearization (FL),
a linearized system is obtained and then the DC-link
voltage can be designed by the classical linear control
theory.

For MPPT, in the conventional optimal torque con-
trol method, the torque reference is proportional to
the square of the generator speed and the generator
torque is controlled to reach its optimal value which
corresponds to the maximum power conversion coef-
ficient [19], [20]. Due to the relatively low variation
of the generator speed in the large wind turbines, the
variation of the generator power is also narrow. The
shortcoming of the optimal torque control is the slow
response time for wind speed variations.

The aforementioned MPPT methods are based on
the steady state characteristics where the effect of the
turbine inertia is ignored. Thus, a new method has
been proposed for the fast MPPT performance, in
which the large inertia effect of the wind turbine was
investigated. A proportional controller is added to the
torque control to decrease the effect of the moment of
inertia of the wind turbines. To verify the effectiveness
of the proposed algorithm, the simulation results for
the 2-MW PMSG wind turbine system are provided.

This paper is organized as follows. The modeling
of the wind turbine systems is described in Section
Next, the PMSG control system consisting of
conventional method and proposed method for both
machine-side converter and grid-side converter is an-
alyzed in Section [ 3. | Then, the simulation results
for the PMSG wind turbine system are investigated in
Section [4. | Finally, the conclusion is presented in
Section [5.]

2. Modeling of Wind Turbine
Systems

2.1. Modeling of Wind Turbines

The output power of WT (P,) is determined as [20]:

1
P, = SomRC,(\ BV,

(1)
where p is the air density [kg - m™3|, R is the radius of
blade [m|, V is the wind speed [m -s™!], and C, (X, )
is the power conversion coefficient which is a function
of the tip-speed ratio (T'SR) and the pitch angle (3),
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in which the TSR is defined as [20]:
th
A= —-. 2
e @

The Cp (), B) is expressed as:
Cp(A, B)

1 1
(o e ) (erd).

where
1 1 0.035
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L 3 Cp(A0B), o
10°

z
oo 15
5
z
=3
&
o
o
g
£ 05
E

o \

500 1000 1500 2000 2350
Rotating speed, @ , [rpm]
0.
c -_— s 1 . 4;&\700;5)
o b oG X _(_wﬁ):(’-»[]|6(x*0-03»)*5]@ :
= 04 !
35 \
5
2 |
203 }
8
1
5 o2 I
E |
8 |
pu |
ER !
s i
= I
o) |
% 4 5 6 7 8 9 10 11 12
f
Tip-speegpratin, i
Fig. 1: Wind turbine characteristics: (a) P;—w¢ curve, (b) Cp—

A curve.

The WT is characterized by (P; —w;) and (Cp — A)
curves as shown in Fig. In Fig. (b), the power
coefficient, Cpyyqq, has its maximum value at the opti-
mal TSR, Ayp:. Thus, to maximize the C,, the WECS
must operate at the A,,:. However, when the wind
speed changes, the TSR is out of the optimal value.
To keep the optimal TSR, the rotational speed needs
to be adjusted by the control system.

2.2. Modeling of PMSG

The stator voltage equations of the PMSG are
expressed in the synchronous d — ¢ coordinates
as [22], 23], [24):

dIds

Vds = RsIds + Lsi - erqusy

i (6)

dl,e
Vas = Rulgs + Lt - w, Lolas +wrdy,  (7)

where Iq, and I,s are d, g-axis stator currents, R, and
L, are stator resistance and inductance, Lq and L,
are d, g-axis inductance, Ay is magnet flux, and w, is
electrical angular speed.

For the generator with surface-mounted permanent
magnets, d- and g¢-axis inductances are the same.
Then, the electromagnetic torque T, is expressed as:

)‘fIq87 (8)

where p is the number of poles.

The output electrical power can be calculated as:

Py = 1~5(Vqqus + Vaslas).- 9)

2.3. Modeling of Shaft System

The turbine torque with one-mass modeling of wind

turbine systems is expressed as [23], [24]:
dwt

Tt = Jti + Tg + Btwt,

o (10)

where J; is the combined inertia of the turbine and
generator, By is the damping coefficient of turbine, w; is
the rotor speed of wind turbine, and 7} is the generator
torque.

3. PMSG Control System

3.1. Control of Machine-Side

Converter for Constant DC
Voltage

1) Conventional DC-Link Voltage Control

The control loop of the pulse-width modulation
(PWM) converter usually consists of the outer DC-
link voltage controller and inner AC input current con-
troller. The IP DC-link voltage controller is preferred
since it gives less overshoot than the PI-type [26]. The
controller output is given by:

Pout

15V,

%ZP&%#&/W%WMM+ (11)

The last term in Eq. is a feed-forward control
component for output power (P,,:). The power bal-
ance of the input and output of the DC-link is ex-
pressed as:

Cavy,
2 dt

= 137, _Pout7 (12)
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where C' is the DC-link capacitance, P;, is the input
power of the PWM inverter, which is obtained from

Eq. @[)

For the PMSG, to achieve maximum torque control
sensitivity, and improve dynamic machine response,
d—axis current (I4) in Eq. (9) is controlled to zero.

Thus, Eq. @[), Eq. and Eq. are expressed as:

g ddec
2 dt

= 1.5V [—KpVae + K; /(Vd*c — Vae)dt]. (13)

Expanding Taylor series of the DC-link voltage at op-
erating point(Vge) and neglecting higher-order terms,
Vi = Vi + 2(Vae — Vaeo)- (14)

From Eq. and Eq. , the transfer function
of the DC-link voltage and its reference can be derived

from power balance of the input and output of the DC-
link as [26]:

1.5V K;
Vae(s) cvy,
Vd*c(s) 52 + 15‘/:15KPS 15‘/;]st
cvy, cvy, (15)
_ wp
82 4 26wps + w2’
where Vi3 = V40 is the g—axis generator output volt-

age, wy is the undamped natural frequency and £ is
the damping ratio. From Eq. , the proportional
and integral gains are obtained as:

¢ Vd*c

K, = 2w, 15V, (16)
cv;
2 dc . 1

In this research, the controller gains are selected as
K, = 14.21 and K; = 803.87 by setting { = 0.707 and
wp, = 80 [rad/s]|, which are selected by experience.

2) Nonlinear Modeling

To design the DC-link voltage controller, the dynamic
characteristics of wind turbines in the PMSG wind
power system are considered. Neglecting the converter
loss, the generator power and the DC-link capacitor
power can be expressed as:

d(JJt

P, =P — thtﬁ - Btth - Pg.lossa (18)
dVye
Peap = CVdCT: = Py = Pyrid (19)

where P, is the generator power, FPy.;q is the grid
power, P, .5 is the generator loss, P, is the DC-
link capacitor power, V. is the DC-link voltage, C is
the DC-link capacitor.

From Eq. and Eq. , a dynamic equation for
the PMSG wind turbine system is expressed as:

dwt dVdc
Pgrid = Pt_thtI_Btwg_Pg.loss_CVch-

(20)

A nonlinear relation between V. and w; is shown
in Eq. . This nonlinear equation can be linearized
using a feedback linearization theory, which will be de-
scribed in the following section.

3) Feedback Linearization

A single-input and single-output nonlinear system is
expressed as [27], [28]:

&= f(z) +g(x)u, (21)

y = h(z),

where x is the state vector, u is the control input, y
is the output, f and g are the smooth vector fields,
respectively, and A is the smooth scalar function.

The nonlinear equations in Eq. and Eq. are
expressed in the form of Eq. as follows:

(22)

: Pyrid 1
Vae T CVae CVae
= + P, (23)
th i _ Btwt _ Pg.loss — 1
Jrwe Jt Jrwe Jwm

In Eq. , the DC-link voltage is selected as an
output. For the linearization, a relation between input
and output should be delivered. So, the output y in
Eq. is differentiated as [29):

§=Th(f +g-u) = Lih(x) + Loh(z) -u,  (24)
where Lyh(x) and Lyh(z) represent Lie derivatives of
h(zx) with respect to f(z) and g(x), respectively. The
Lie derivative is defined as [29]:

oh

Lih=Vhf=~>.f.

9 (25)

If Lyh and Lyh are replaced to A(z) and E(z), the
output of the system is obtained as:

j= A@) + B(x)u, (26)
where
Alz) L p o and By = — 27)
I S, _ L
o CV,, 9rid A e = ay
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If a control input u is chosen as:

u=E"(2)[-Ax) + ], (28)
where v is the equivalent control input to be specified.
The resultant dynamics become linear as:

y=u. (29)
To eliminate the tracking error in the presence of

parameter variations, the new control input with an
integral control is given by:

vzy’*—kle—kzg/edt, (30)
where e = y — y*, y* is the tracking reference, and k;
and ko are the controller gains.

If the all gains of k1 and ko are positive, the tracking
error converges to zero. From Eq. , we obtain error
dynamics as:

By locating the desired poles on the left-half plane,
the controller gains are determined and asymptotic
tracking control to the reference is achieved [27], [30].
It is assumed that the solution of Eq. is expressed
as:

s12=—a=xjf (a>0,8>0). (32)

In this work, by selecting the poles at 512 = =75+
750 which are based on experience, the gains can be
obtained as k1 = 1.5 and ko = 81.3.

4)  Control of Machine-Side Converter

The operation of the GSC is directly affected by the
unbalanced grid voltage, in which the generator power
delivered to the grid is restricted. During this grid fault
duration, the wind turbine and generator should keep
operating as if they do in the normal condition. Thus,
the power transferred from the generator side may
make an increase in the DC-link voltage. Differently
from the conventional control of the AC/DC converter,
the DC-link voltage is controlled by the machine-side
converter instead of the GSC. The basic principle is
that the generator-side converter should try to adjust
the generator output power to balance the load power
need, such that the dc-link voltage can be maintained.

From Eq. to Eq. , the block diagram of the
proposed nonlinear DC-link voltage control is partially
shown in Fig. 2] Unlikely the conventional method,
the generator power reference is produced through the
DC-link voltage controller instead of the maximum
power point tracking controller. For vector control of a

PMSG, the cascaded control structure of the machine-
side converter is composed of the outer generator power
control loop and the inner current control loop. In or-
der to obtain maximum torque at a minimum current,
the d—axis reference current component is set to zero
and then the g—axis current is proportional to the ac-
tive generator power, which is determined by the DC-
link voltage controller.

ﬁﬁﬂ PMSG

R e

EITERTCNCE
I

Machine - side converter

Voltage controller

¥
Ba a ][]Y L,
v, Alx) p* Iq s ] g

v - g ? q- axis D e

L hele O]l CE;‘:;?L[ * current
s d .
R ]q‘\ f &x;ntrol.ler 10| Jsvewn

s . 5 -axis
= Pg I =0 J current

controller

Fig. 2: Control block diagram of the machine-side converter.

3.2. Control of Grid-Side Converter

for MPPT

1) Optimal Torque Control

’B—l Wind Turbine Modeling
L
+ 1 0®,
= J,s+ B,

Fig. 3: Wind turbine modeling including the optimal torque
control.

For the small signal analysis, applying a small per-
turbation at the operating point (wy, 5o, Vo) to the tur-

bine torque in Eq. :
d(wto + &ut)
+Bi(wio + 0wy) + (Tgo + 0T).

(Tto -|— 5Tt) - Jt

As mentioned above, the turbine torque is a function
of the wind speed, generator speed and pitch angle.
Making the partial derivative from Eq. , the turbine
torque is expressed as [13]:

0Ty = =B, - dwy + ky g - 08+ kry - 0V, (34)
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B, is the intrinsic speed feedback of the turbine, k, g
denotes the gain between the pitch angle and the tur-
bine torque, and k,y is the gain between the wind
speed and the turbine torque. From Eq. and
Eq. , the mechanical torque is rewritten as:

déwt

J
Pt

+(Bi+B,)ow, = K, g0 —0T4+ K, voV. (35)

The generator torque reference from the turbine
speed is expressed as:

Ty = Kopwy, (36)
where 5
1 R
Kopt = =pACy mas | —— | - 37
= 504Cyor (5 (37)

In the optimal torque control, the torque reference
of the PMSG is linearized at the operating point as
follows:

Tg*(: Tg) =Ty + 5Tg
= Kopt(wio + 5wt)2

~ 2
~ otpWio + 2Koptwt0 5wt7

(38)

where wyq is the rotor speed at the operating point.

From Eq. and Eq. , the transfer function
between the turbine torque and the rotor speed which
are shown in Fig. [3]is obtained as:

&ut 1

G = — = .
(S) 6Tt JtS + Bt + B'r + 2Koptwt0

(39)

2) Proposed Torque Control

When the wind speed varies, the dynamic response in
the optimal torque control is restricted since the tur-
bine speed determines the torque reference. To improve
the performance of the MPPT control in the transient
state, the difference between the turbine torque and
the generator torque needs to be large so that the sys-
tem can accelerate or decelerate quickly. In addition,
the MPPT control method has to keep the Cj, to be at
the maximum value at the steady state. To satisfy this
requirement, a proportional controller is added to the
optimal torque controller. Then, Fig. 3] is modified to
Fig.[l From this model, the generator torque reference
is calculated for the MPPT control.

This controller is effective only in the transient state
and its effect vanishes in the steady state where the
proposed controller has the same characteristics as the
optimal torque one described above. With the propor-
tional control loop, the transfer function in Eq. is
modified as:

50Jt . 1
6T, Jls+ BL+ B, + 2Kpwio

G'(s) = (40)

Prop: torque i

Fig. 4: Wind turbine modeling including the proposed torque

control.
where J B
/ t / t
"=k, M BE g (41)

and K, is a proportional gain which determines the
transient performance of the MPPT control.

It is noticed from Eq. that the inertia moment
(J{) and the damping coefficient (B;) are effectively
decreased by the proportional gain, which makes the
dynamic response faster. Thus, a large-inertia wind
turbine system can be controlled similarly to a small-
scale one under the torque capability of the system. In
this research, the gain is empirically selected by a trial
and error, which is 1 for the simulation.

Figure [5fa) and Fig. [5(b) show the MPPT control
block diagrams for the optimal torque control method
and the proposed torque control method, respectively.
The torque reference multiplied by the turbine speed
(wt) obtains the optimal power reference. This MPPT
control block diagram can be substituted into the cor-
responding part in Fig. [

* i 5k
a)r Tg ])t
Kopta)t ), —
(@)
7 P
w i
1 g g n i t
Kgpta)f : ”‘_ @, —
bl & k
P
(b)

Fig. 5: Block diagram of MPPT control. (a) Optimal torque
control. (b) Proposed torque control.

Figure [] depicts the effect of the inertia on the tur-
bine system according to the rotational speed, at the
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________________________________________________________________________________

Generator Tdrq ue: Ty

T,T:

Inertnal Torque T, =

n

T gn= T,- T4
New Inertial Torque

T, ..—T.-T.J i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Torgue (Nm})

Rotational speed (rpm)

Fig. 6: Inertia effect on the turbine system with and without
an added proportional gain.

wind speed of 10 [m - s~!], with or without an added
proportional control loop, in which the maximum value
of the power coefficient, Cpqz is 0.41 at the optimal
TSR of 7.95.

For the conventional optimal torque control method,
an inertial torque (7}), which leads to acceleration or
deceleration of the turbine system, is determined by the
difference between the turbine torque and generator
torque (T} — 7).

It is noted that the electrical power varies faster than
the mechanical one due to the turbine and generator
inertia. If an inertia is large, any change of the tur-
bine speed will cause a large variation of the generator
power. Then, the kinetic energy is absorbed or released
so slowly that the performance of the MPPT becomes
slow. Thus, a proportional controller is employed to re-
duce the effects of the inertia moment and the damping
coefficient. With the proposed torque control method,
whose block diagram is shown in Fig. (b)7 if the ky
is selected to be 1 as aforementioned, the generator
torque reference is decreased to T, ,,. Then, the iner-
tial torque is increased to Ty , to accelerate the tur-
bine system more quickly. As can be seen from Fig. 6],
an inertial torque in the proposed method is larger than
that of the optimal torque control method. Thus, the
acceleration of the rotor will be faster.

3) Grid Power Reference

As shown in Fig. (b), the maximum power of the wind
turbine is calculated as:

P=T;, (42)

From Eq. and Eq. , the grid power reference
is given by:

% % wtdwt
grid — Tg_n cwr — Ji dt
(43)
ViaedV,
_Btw? — Lg.loss — C%

As can be seen in Eq. , the grid power refer-
ence (P;,;) is obtained by applying the MPPT method
from the wind turbines.

4) Current Control under Unbalanced Grid
Voltage

In unbalanced grid voltage conditions, the positive-
sequence voltage component in the stationery reference
frame is expressed as [31], [32]:

1 _ _ _ 1 _
e 5(2€9a — €gb — €gc) jg\/g(ega €ge)
+ 1 _ |1 _ _ _ 1 _
Cob | = 5 (2eg0 — €gc — €ga) jg\/g(egc €ga) | ,
+ 1 1
€gc g(2egc — €ga — €gb) — jQ\/g(ega — €gb)
(44)
where egq, €gp, €gc and ega, e;rb, e;C are the instan-

taneous grid voltages and the positive-sequence com-
ponents, respectively. The j in Eq. means the
phase shift of 90 degrees, which is obtained by using
all-pass filters [32]. The d-axis voltage calculated from
the positive-sequence component of the grid voltages
is controlled to be zero, from which the reference grid
phase angle for control is determined [31].

The apparent power delivered to the grid under un-
balanced conditions is expressed in terms of the posi-
tive and negative sequence components as [33]:

S =1.5(e/e  +e ¥y )
(45)
(ejwt - +€ jwtldqs)*v

where the superscript of “x” represents a complex con-
jugate value, and the superscripts “+” and “—" are the
positive- and negative-sequence components, respec-
tively.

Thus, the apparent power is divided into the active
power p(t) and the reactive power ¢(t) [33].

p(t) = PO + P02 COS(2(Ut) + Ps2 Sin(QWt)7 (46)

q(t) = Qo + Q2 cos(2wt) + Q2 sin(2wt), (47)
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where

Po=15(EJIf +EfI; +E;I; + E/I,),
Py =15(EfI; + EfI; + E;If + E; 1)),
Py =15(EfI, —EfI; —E; I} +E[ 1),
Qo=15(-EjIf +EJI] —E I + E; 1),
Qe2=15(—EjI; +EfI; —E;IT + E;1]),
Qe =15EJI; +EfI; —E;j I —E;I).

From Eq. and Eq. , the power (Py, Qo, Pso,
P.5) can be represented in a matrix form as:

‘R [Ef Ef E; E;[I]]
Qo Ef —EBEj E; —Ej| |If
= (48)
Py E; —E; —Ef Ef||I;
\Pe| |E; E; Ej Ef]||I]

The second-order components of power (P.o, Ps2)
due to the unbalanced grid voltage fluctuates not only
the DC-link capacitor power but also the real power
delivered to the grid. These two components are con-
trolled to zero to eliminate the power fluctuations. The
real power reference (Fj) is obtained in Eq. (43). The
reactive power reference (Q§) can be determined from
unity power factor operation or the grid requirements.
Therefore, the positive- and negative-sequence compo-
nents of the current references are expressed as:

) [ED OB B B[R
I Ef —-Ef E; —E; Q;
= (49)
;77 E; —-E; —Ef Ef 0
I; E; E; Ej Ef|| 0 |

Grid - side converter

|3 4% 3 =

L
e |
f— £
dc vy ] ] egb
‘I { { il |, T I C| ||
E,
Positive & Negative - £

Sequence extraction f+——

”*

Sae LILIVELE,

.

Positive I

P o
sequence 49 Current i [Grid power :
SVPWM current controller| reference reference
. Iculation calculation
Negative ca v,
sequence —1(Eq.(49)) —20 (Eq.(43)) |«—%
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*

Fig. 7: Control block diagram of the grid-side converter.

The control block diagram of the GSC consisting of
the dual current controller for positive- and negative-
sequence components is shown in Fig. [7 [33].

4. Simulation Studies

To verify the effectiveness of the proposed method, the
simulation has been carried out using the PSIM soft-
ware for a 2-MW PMSG wind turbine. The parameters
of the wind turbine and generator are listed in Tab. [I]
and Tab. [2 respectively. The DC-link voltage is con-
trolled at 1,300 V, the DC-link capacitance is 0.1 F,
the switching frequency is 2 kHz, and the grid voltage
is 690 V,,5/60 Hz.

Tab. 1: Parameters of wind turbine.

Rated power 2 MW
Blade radius 45 m
Air density 1.225 kg- m—3
Max. power conv. coefficient 0.411
Cut-in speed 3m/s
Cut-out speed 25 m/s
Rated wind speed 10.6 m/s
Blade inertia 6.3 - 10% kg - m?

Tab. 2: Parameters of 2 MW PMSG.

Rated power 2 MW
Grid voltage 690 V
Stator voltage/frequency | 690 V/60 Hz
Stator resistance 0.008556 €2
d-axis inductance 0.00359 H
g-axis inductance 0.00359 H

4.1. Proposed MPPT Control

Figure [§ and Fig. [9] show the dynamic responses of the
optimal torque control (conventional control method)
and the proposed torque control methods, respec-
tively, when the wind speed changes from 6 m-s~! to
8m-s~! at 20 s and back to 6 m -s~! at 50 s. For the
easy investigation, the grid is assumed to be normal.
Also, the damping coefficient is neglected in the simu-
lation.

Figure b) shows the power conversion coefficient,
Cp, which is recovered to Cppqe in 1.5 s after the
sudden drop at 20 s. Meanwhile, it takes just 0.6 s
for the proposed torque control method. Compared
with the optimal torque control method, the Cp in the
proposed method gives the faster response during the
step-wise change of the wind speed. Also, the actual
turbine power P; as shown in Fig. c) reaches steady
state after 1.5 sec, while it takes just 0.5 sec for the
proposed torque control method (Fig. @(C))
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Fig. 8: Responses of optimal torque control in step-wise wind Fig. 9: Responses of proposed torque control in stepwise wind

speed variation: (a) wind speed, (b) power conversion
coefficient, (c) actual and maximum available turbine
power, (d) generator power, (e) generator torque and
generator torque reference, (f) turbine torque, (g) rotor
speed, (h) DC-link voltage.

(©2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

speed variation: (a) wind speed, (b) power conversion
coefficient, (c) stator active power, (d) turbine torque,
generator torque and generator torque reference, (e) ac-
tual and maximum available turbine power, (f) genera-
tor speed.
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As can be seen in Fig. d), the generated active
power is also varied, and then, reaches the steady state
after 4.4 sec. However, in the proposed torque con-
trol method as shown in Fig. |§|(d), this value gives the
faster performance than that of the conventional con-
trol method.

The actual generator torque, generator torque refer-
ence, and the turbine torque are illustrated Fig. e)
and Fig. f ), respectively. With the conventional
method, the generator torque follows its reference value
and reaches the steady state after 4.5 s. But, with the
proposed method, the actual generator torque, the gen-
erator torque reference and turbine torque as shown in
Fig. Eke) and Fig. El(f), respectively, becomes better
when compared with the conventional one. With the
same pattern of the wind speed, the generator speed in
both cases is increased. However, as shown in Fig. El(g),
the generator speed in the proposed method accelerates
faster than it does in the optimal torque control one, as
illustrated in Fig. g). As a result, more turbine power
can be captured. The proposed torque control method
provides better performance than the optimal torque
control one in transient state due to the proportional
controller.

By applying the feedback linearization at the MSC,
the generator is controlled to keep the DC-link voltage
to follows its reference well and is maintained within
variation of less than 1 %, as illustrated in Fig. [§] and

Fig. [O[h).
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Fig. 10: Comparison of performance responses between opti-
mal torque control method and proposed torque con-
trol method: (a) power conversion coefficient, (b) gen-
erator output power, (c) Energy.
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Wind power generation performance for grid phase-A
voltage sag: (a) grid voltage, (b) magnified waveform
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and negative sequence d — ¢ axis voltage, (f) genera-
tor speed, (g) turbine and grid power, (h) turbine and
generator power, (i) DC-link voltage.
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Figure shows the comparison of the responses
of the power conversion coefficient, generator out-
put power and energy, with the same wind profile as
Fig. a), for both optimal torque control and proposed
torque control methods. As can be seen, the MPPT
using the proposed torque control method gives good
performance. It is evaluated that the average power
conversion coefficient with the proposed torque control
method is 0.63 % higher than that of using the optimal
torque control one. Also, with the proposed method,
the energy production is also 0.43 % larger than that
of with the optimal torque control method. Of course,
the energy production will depend on the wind speed
profile and the proportional gain, etc.

4.2. DC-Link Voltage Control

Figure [T1] shows the system performance for a grid un-
balanced voltage sag, in which the wind speed is as-
sumed to be constant (8 m - s~1!) for easy examination.
The fault condition is 70 % sag in the grid A-phase
voltage for 1 sec (60 cycles), which is between the point
"a" to "b" as shown in Fig. [[1fa). Figure [11b) and
Fig. [11}c) shows the magnified grid voltages and the
magnified grid positive g-axis, respectively, for 6 cycles
just before and after fault. Also, the grid phase an-
gle for control using the phase locked-loop algorithm
under unbalance conditions [3I], [32] is illustrated in
Fig.[11|(d). Fig.[11](e) shows the positive- and negative-
sequence d — ¢ axis voltages. Due to the grid unbal-
anced voltage sag, the positive-sequence g-axis voltage
is reduced and the negative-sequence d—q voltage com-
ponents appear. During the grid fault duration, the
generator speed is increased to keep the DC-link volt-
age constant as shown in Fig. f). Also, the grid, gen-
erator and turbine powers are illustrated in Fig. g)
and Fig. [[1[h). Figure[L1}i) shows the DC-link voltage
response, where the maximum voltage variation at the
transient state is about 3.1 %.
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Fig. 12: Performance of DC-link voltage control with: (a) PI
control, (b) FL control.

Fig. 13:

(©2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

Fault duration A

o ———
p——
W

(b) Magnified waveform of the gm\
E

Normal | Fault
N

(a)Grid voltage[V] @

0.01]sec/div]
(¢) Magnified waveform of the positive g-axis voltage[V]
600

Normal «—q—Fault

I
550 T 2
E
500 4
450
400
350
300 0.01[sec/div]
(d) Grid phase angle[rad]
32
Angle
1.6
0
-1.6
=32 .01[sec/di
(e) Positive and Negative sequence d, g-axis voltage[V]
700
600 =
T - -
» E i By B
200 * E; -
q
b/ ll
0 I T
2200 0.5[sec/div]

(f) Generator speed[rpm]

15.9

@,
158 \
15.7 N3

)

0.5[sec/div]

5
(¢) Turbine and grid power[MW]
2

0.5[sec/div]

0.
(h) Turbine and generator power[MW]
1

7

P

gen

0.5[sec/div]
0.2

1.31

1.30 prmein

1.29

0.5[sec/div]
1.28

Wind power generation performance for three-phase
unbalance voltage drops (30%-phase A, 40%-phase B,
50%-phase C): (a) Grid voltage, (b) magnified wave-
form of the grid voltage, (¢) magnified waveform of
positive g-axis voltage, (d) grid phase angle, (e) posi-
tive and negative sequence d — ¢ axis voltage, (f) gen-
erator speed, (g) turbine and grid power, (h) turbine
and generator, (i) DC-link voltage.

91



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 13 | NUMBER: 2 | 2015 | JUNE

Figure [12] shows the DC-link voltage responses for oL Feulédanstion %’ T
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Figure shows the performance of the system for
a grid unbalanced voltage swell. The fault condition is
10 % swell in the grid A-phase voltage for 1 sec (60 cy-
cles), which is between the point "a" to "b" as shown
in Fig. [1 ( ). The magnified grid voltages and the
magnified grid positive g-axis for 6 cycles just before
and after fault are shown in Fig. [[5(b) and Fig. [I5{c),
respectively. In addition, the grid phase angle for con-
trol under fault conditions is illustrated in Fig. [15(d).
Figure|15|e) shows the positive- and negative-sequence
d — q axis voltages. The positive-sequence g-axis volt-
age is increased and the negative-sequence d — g volt-
age components occur due to the grid unbalanced volt-
age swell. As shown in Fig. f), the generator speed
is increased to maintain the DC-link voltage constant
during the fault duration. Also, the grid, generator
and turbine powers are illustrated in Fig. g) and
Fig. [15[h). Figure[15]i) shows the response of the DC-
link voltage, in which the variation of the maximum
voltage at the transient state is about 0.385 %.

Figure[I6]shows the responses of the DC-link voltage
for both the conventional PI control and feedback lin-
earization control methods under the same grid fault
condition (10 % swell in the grid A-phase). The pro-
posed method gives faster transient response and lower
overshoot, compared with the PI control one.

5. Conclusions

This paper proposes the control strategies of the back-
to-back PWM converters in PMSG wind power sys-
tem, for the grid voltage faults and for the MPPT.
At the grid fault, a method is based on the DC-link
voltage control at the machine-side converter, using
feedback linearization technique. The MPPT strategy,
where a proportional controller is added to the torque
controller to improve the dynamic performance of the
MPPT control, is developed to control the grid power
at the grid-side converter. The validity of the control
algorithm has been verified by simulation results for
2 MW PMSG wind power system.
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